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Abstract. When constructing series expansions for the zero-field partition function of the 
q-state Potts model on the square lattice using the finite-lattice method, the series can be 
extended by one term by adding a correction of ( q  - 1) times the number of convex polygons 
of an appropriate order. By virtue of duality, such corrections apply for both high- and 
low-temperature series. For low-temperature series, corrections to the field-dependent 
partition function are of the same order in the temperature variable as the zero-field 
correction. The general corrections are given by area-weighted moments of the number of 
convex polygons. We obtain conjectured closed-form expressions for the two generating 
functions that give corrections to the first two field derivatives of the low-temperature 
partition function. These solutions are also of interest as exact solutions in the study of 
restricted self-avoiding-walk problems, in this instance restricted by convexity. They also 
solve what has been described by Delest and Viennot as a major problem. We note that 
our generating functions satisfy the analogue of the scaling relation a + 2 p  + y = 2. 

We are currently engaged in a program of using the finite-lattice method (de Neef and 
Enting 1977) to extend series expansions for various lattice statistics models. We have 
made a number of improvements to various finite-lattice algorithms but the main reason 
that we have been able to extend various series is the increasing availability of powerful 
computers with large amounts of memory. 

In the early applications of the finite-lattice method, nearly a decade ago, increases 
of 50 io 100% in the number of series terms were obtained. Repeating these early 
calculations using modern computers gives further increases of typically 50 to 100% 
in the number of series terms. Our studies have concentrated on self-avoiding polygons 
on two-dimensional lattices (using refinements of the algorithm described by Enting 
(1980a)) and the Potts model on two-dimensional lattices (see Enting 1978, 1980b) 
and in three dimensions (currently in progress). 

In the course of our polygon enumeration on the square lattice we noted (Guttmann 
and Enting 1988a) that if the finite-lattice method gave the polygon generating function 
correct to order x m  then the next term was also complete apart from a relatively small 
correction given by C,,,+~X"'+~ where c, is the number of convex polygons of n steps. 
These convex polygons are such that any straight line on the bonds of the dual lattice 
cuts the bonds of the convex polygon at most twice. In our studies of the q-state Potts 
model on the square lattice we have noted that the first correction to the finite-lattice 
calculations of the partition function is of the form (q - l)c,,un for high-temperature 
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series and by duality ( q  - l)cnzn for low-temperature series. The low-temperature series 
for the Potts model partition function, Z, is of the form (Wu 1982) 

( 1 )  

where v is the lattice coordination number and  z = exp(-AE/kT) ,  p = exp(-H/kT) ,  
AE is the energy per pair of non-identical neighbours and H is the energy per non-zero 
spin. The & ( p )  are polynominals in p. 

For the low-temperature series, the convex polygons are the graphs describing the 
corrections to the finite-lattice method in a general field. However the correction term 
involves area-weighted moments of the convex polygons rather than simply their 
number. The finite-lattice expression for low-temperature expansions of the partition 
function approximates the full expansion ( 1 )  by the finite product: 

Iim Z: ' = Z( z, p ) = 1 + ( q - 1 )z"p + . . . = 1 + 1 ~ " 4 ~  ( p ) 
n - X  n 

In order to reduce the complexity of the calculations we have generally made the 
substitution p = 1 - y  and truncated the expansion in y at order y'. This is sufficient 
to give us the low-temperature partition function, order parameter and susceptibility. 
If is the number of convex polygons with n = 4 w + 4  steps and  area m, then the 
correction to (2) of lowest order in z is given by ( 4 -  l)Xmcn,mzn(l - y ) " .  Our interest 
in corrections to expansions truncated at order y 2  leads us to consider the three 
generating functions 

P ~ ( z )  1 Cn,mZn (3a)  
n m  

We obtain the P , ( z )  by calculating the low-order coefficients using a transfer matrix 
technique and  then fitting a recurrence relation which enables us to determine the 
function, assuming that we have calculated sufficient terms. We used this approach 
(Guttmann and  Enting 1988b) to determine 

(4) 

with x = z2 .  This result had the status of a conjectured exact result. 
Unknown to us, this result had previously been obtained by Delest and  Viennot 

(1984) using the theory of algebraic languages. The result was subsequently confirmed 
by Lin and  Chang (1988). Although our method is not rigorous, it is particularly 
convenient and we have used it to obtain 

P ~ ( z )  = x*[( 1 - 6 x +  1 Ix' -4x')/( 1 - 4 ~ ) '  -4x2/(  1 -4x)'"I 

P ~ ( x )  = x'[( 1 - 1 2 ~  + 50~' - 76x3 + 4 2 ~ ~ -  48x5 +32x6)/(  1 -4x)"+4x2/(  1 - 4 ~ ) ~ " ]  
( 5 )  

and 

P ~ ( x )  = x'[ R ( x ) / (  1 - 4xI6+ S(X)/ (  1 - 4 ~ ) ~ ' ~ ]  

R ( x )  = 2 +  5~ - 2 2 4 ~ ' +  1 3 0 6 ~ '  - 3352x4+4536x5 -3424x6+ 1664~' -  5 1 2 ~ '  

( 6 a )  

where 

(66) 
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and 

S ( x )  = -29x + 172x2 - 356x3 + 312x4 - 120x5. (6c) 
While the derivation of P,(x)  followed that of Po(x), described in Guttmann and 
Enting (1988b), the derivation of P2(x) was rather more complicated. Our computer 
program obtained a recurrence relation with non-integer coefficients in this case (unlike 
the case of Po(x) and P l ( x ) ) ,  and some ingenuity was required to establish equation 
( 6 c ) .  In particular, it was clear from the differential approximants that P 2 ( x )  was of 
the form (6a) .  We therefore considered the series expansion of 

Q ( x ) = ( l  - ~ x ) ~ ’ ~ P ~ ( x ) , / x ~ =  R ( x ) / ( l  - 4 ~ ) ~ ” + S ( x ) .  (6d) 
As S ( x )  is a polynomial of degree n,, i t  contributes only to the first n, terms of the 
power series expansion of (6d) .  We therefore multiply the last known coefficients of 
Q(x) by ( 1  - 4 ~ ) ~ ’ ~ ,  and if our initial assumption of a functional form given by (6a)  
is correct, a polynomial will result. This was indeed the case, giving the results (6b) 
and (6c) above. Again, these results have the status of conjectured exact results. 
However, to determine (5)  required 19 terms out of the known 24 non-zero terms, 
while the more ingenious method used to determine (6a) required 16 terms out of the 
known 23 non-zero terms. The additional terms were then predicted. As these are 
integers with up to 18 digits, the likelihood that the conjectured exact results are wrong 
is extraordinarily small. The solution so obtained solves what Delest and Viennot 
(1984) have termed a ‘major problem’. 

The series used to derive these generating functions were obtained by a simple 
modification of the expressions given by Guttmann and Enting (1988b). We considered 
four sets of partial enumerations which we denoted Rfj, Sfj, Ti, U ;  and defined 
relations of the form 

X K ’ = c  R f + c  TrJ+C U:, ( 7 )  
I  2 3 4 

where X represents one of R, S, T or U and the precise range of each summation 
over i and j depends on which variable X represents, as well as on m and n. We 
generalise these relations to include the y dependence in R, S, T and U. The equations 
(7)-(10) of Guttmann and Enting (1988b) which we represent by the generic relation 
( 7 )  are generalised to the form 

with the ranges of each sum remaining unchanged. Our calculations only retain the 
y dependence to order y2. 

While we have mainly considered the generating functions P1(z) and P 2 ( z )  in their 
role of correction terms to Potts model expansions, they are interesting quantities in 
their own right. They represent new, presumably exact, solutions of additional 
geometrical properties of convex self-avoiding rings. 

It is of some interest to relate these quantities to a ‘Potts-like’ model in which the 
convex polygons are the only terms contributing, i.e. 

Z * ( Z , ~ = ~ - Y ) = ~ + P O ( Z ) - ~ P ~ ( Z ) + Y ~ P ~ ( Z ) .  (9) 
In this representation, the exponent a is the dominant exponent of 
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The exponent p is given by the dominant exponent of P , ( z ) / (  1 + P o ( z ) ) ,  i.e. p = -2. 
The exponent y is given by the dominant exponent of P z ( z ) / (  1 + P,(z)) .  Thus = 4. 
These exponents satisfy the scaling relation a +2/3 + y = 2 .  However, since P,/Po 
diverges ( p  = -2), this quantity does not seem to have any obvious interpretation as 
an  order parameter. It should be noted that these definitions of analogues of thermo- 
dynamic quantities are related to the low-temperature Potts/ Ising expansions. Alterna- 
tive relations could give other sets of exponents. In particular Lin and  Chang (1988) 
were able to determine the asymptotic form of the mean-square radius of gyration of 
convex polygons and, with what was essentially an analogue of high-temperature series, 
found the exponents a = 4, v = 1. Thus the extension of convex polygon statistics to 
produce analogues of all the conventional exponents a, p, y, 6, v.. . can be performed 
in  more than one way. Presumably the same is true for unrestricted self-avoiding 
polygons. 

In conclusion, we comment on the correction terms for finite-lattice expansions for 
the Potts model on the simple cubic lattice. In the absence of duality, different graphs 
are involved for high and  low temperatures. For neither case d o  we have a closed-form 
solution but for q Z 2  we can exploit our  knowledge of the 4 dependence of the 
corrections, and multiply the corrections for the Ising (q  = 2) case by ( q  - 1 ) .  The 
calculation of Ising model series is easier than for larger q values and  so the Ising 
series can usually be obtained to higher order. The low-temperature corrections are 
given by a particular class of tree graphs and they give corrections for the next two 
terms in each low-temperature expansion. The graphs that give corrections to the 
high-temperature series are what we call ‘maximally extended polygons’. These are 
the three-dimensional generalisation of convex polygons. Any plane face of the dual 
lattice cuts the bonds of a maximally extended polygon at most twice. We have 
enumerated suitably restricted self-avoiding walks to determine that on the simple 
cubic lattice there are 3, 22, 201, 2160, 24 680, 285 384, 3278 484, 37 154 172 such 
polygons with 4, 6 , .  . . , 18 steps respectively. This does not give enough steps for us 
to determine a recurrence relation. The generalisation of our transfer matrix approach 
seems to be too complicated to be practical because the additional dimension removes 
a number of constraints that simplified the square lattice formalism. It remains to be 
seen whether the algebraic language approach of Delest and Viennot or the generating 
function approach of Lin and  Chang encounters similar difficulties in going from two 
to three dimensions. 
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